
So, if the two in a positive numbers; with sign 0 are added and yields a negative number we

will see why what is the reason. So, if there are it’s a signed arithmetic for example, assume

and there are two numbers and you add them and then there is an overflow.

Because you all know in digital design what is the concept of an overflow, but we will also

look in details with some examples in this. For example, so ah like as I have told you let us

take an unsigned number already we have taken the example; so, let us take 1111. So, definitely

if I if I there will be a carry over there and in fact, in fact, if I say it cannot be accommodated

in the 4 bits. So, if I assume that the result has to be given in 4 bits and I have two numbers like

1000 and all triple ones.

So, of course, there will be overflow will be generated and also we will see the idea. So, if the

negative number positive numbers whatever happens. So, in other words in a digital arithmetic

if a overflow is generated based on the number of bits you store for the answer and number of

bits you store for the operands if it’s a overflow is there it bit will be it will be set other case it

will be reset.

Like for example, if you add 0000 with triple 0 with. So, 0004; so, the answer is 1000 unsigned

arithmetic of course, no overflow is generated the overflow flag is reset in this case very simple.

Equality as I told you if it’s a; it will this is restricted to a compare instruction.

So, if there is an instruction called compare and then if the two numbers are equal then this flag

is set. So, it is a comp instruction and you give two operands and if they are equal the answer

with that bit is set in the flag register otherwise its reset.

Interrupt enable so this is also a flag in which case you allow an interrupt to be occurred or not;

that means, a main code is running whether we will allow some other code to interrupt if you

allow it. So, it will be its flag will be 1 and if you are not allowing such an interrupt to interrupt

your code then the that flag will be set to 0.

So, at this point of time I am not going to elaborate more on interrupt enable flag because there

a full unit and module which is dedicated to I/O and interrupts. And simply like supervisor

mode also some of the some of the codes may like execute in the supervisor mode. So, in all

those cases you have to set that flag and if you are not allowing any code to run in the supervisor

mode or user privileged or super user privileged mode you can reset this bits.

424

So, these two will be discussed later whenever you are going to some advanced modules mainly

we will be talking in a further down the line on the I/O module about interrupts. Supervisor

mode is something also related to operating system and executing in a coordinate super user

mode etcetera, but in details we will be looking at interrupt flags whenever we will be

discussing the chapter on them. Now based on this some of the very important flags for us is

the sign flag, zero flag, carry flag, parity flag, overflow flag and equality flag. So, these are

some of the most typically important flags which will be used in everyday life of designing

control instructions.

(Refer Slide Time: 21:20)

So, now we will be looking at some of the typical control instructions based on the flags. The

first simpler one is the unconditional instruction; unconditional jump that is you are at this

memory location the PC is say 5 this is the 5th memory location where the code is using then

you can say jump 50. So, without looking at anything the program counter is going to become

50.

Whatever instruction is present in the memory location 50 will be executed, that is a very

simple unconditional jump instruction no flags are required for that.

(Refer Slide Time: 21:50)

425

An example; so, move accumulator 0; so, in this case move immediate so, they have already

mentioned about the accumulator ah this depends on the mnemonics or the instruction type of

this machine. So, they say that move immediate accumulator 0; so, move the value of 0 to

accumulator sometimes as I told you many times you can also drop this.

We say that move immediate 0; it means the default destination operand is the accumulator.

So, MOVI 0 means the value of 0 will be loaded to the accumulator then MOVI 𝑅2, 00. So,

initialize this is also move immediate 𝑅2 00 so in fact, it is better to write this one 00 because

from the size.

So, it is saying that move immediate ah 𝑅2 00 that is you are resetting register 𝑅2 as well as

you are resetting accumulator to 00. So, in this case I am assuming the accumulator is an 8 bit

accumulator. So, these two are just initializing accumulator to 0 initializing user register to

zero. So, in this in this instruction in this machine they are explicitly solved.

So, in this case they are explicitly keeping the value of accumulator in the instruction itself

mentioning let us keep it in that way. And then another very important thing in when you are

doing conditional instructions is the label. So that means, we can attach some labels to the

instruction. So, these are not actually will be written in the memory when the code will be

executed, but actually it is a label.

426

So, label means it is same as a name to the instruction for example, the label 1 it is saying that

ADDI 𝑅2, 1; that means, whatever is the content of 𝑅2 it will be added with 1 and the value

will be given to the 𝑅2; that means, 𝑅2= 𝑅2 +1 that is nothing but increment 𝑅2.

So, the label 1 colon this 1 it means that ADDI 𝑅2, 1 this has the label 1 then what I am doing?

You are adding accumulator to 𝑅2; so, whatever is in the value of 𝑅2 is stored back to the

accumulator. So, now, 𝑅2 is dumped into sorry add the value of accumulator to 𝑅2.

So, whatever is in the accumulator will be added to 𝑅2 and stored back to the accumulator see

the accumulator is equal to accumulator plus 𝑅2. Then jump to label 1 unconditionally again

you jump back. So, what do I mean by jump at label 1 means I want to jump and execute this

instruction.

That is from jump label 1 means jump to add immediate this instruction; you want to jump to

this instruction. So, then how can I tell that jump unconditional to this instruction. So, some

name has to be given. So, label is nothing but the name which is given to this instruction; so,

this label 1 is a name which is given to this instruction.

That is just after adding 𝑅2 to accumulator and storing back the value in accumulator; again I

wanted to jump back to this one. That means, you are going to execute these two instructions

in a indefinitely; there is no condition you execute this then you execute this; that means, 𝑅2 =

𝑅2 +1 that is you are incrementing 𝑅2.

And then again you are going to add the value of 𝑅2 to accumulator and save it to the

accumulator. That means, you are doing 1 +2 + and you are doing 1 +1 +1 and you are actually

keeping on doing it. And it is the infinite loop; if you like see what is happening it is the infinite

loop. So, add immediate 𝑅2 to 1 that means 𝑅2 is initially reset to 0.

So, every time here incrementing 1, 2, 3, 4 and you are adding the same value to the

accumulator. So, you are adding 1 +2 +3 …, but as this your unconditional jump label is the

name of this instruction. So, you are jumping over there; so, you are actually having a infinite

loop there is no exit from this loop. So, this just shows two very important things forget about

this ah infinite loop business; the idea is that jump unconditional means without checking

anything you jump over here and we are doing 1 +2 +3 so, on. And basically as I want to say

jump from this to some instruction.

427

So, some label is there; so, label is the name of the instruction where you want to jump. So, in

this case I have given the name of this instruction. So, whenever I will load the code in that

case I will replace the value of name of the label with a memory location.

Say for example, I load this at memory location 1, I load this as memory location 2; and then

basically ah this instruction is say memory location 3 because label and this is in the same row.

So, label equation number label number 4; so, this is instruction number 5; sorry memory

location number 5. So, it will say jump to label 1; so that means, jump to this memory location

label 1.

So, label 1 is nothing, but memory location 3 where the instruction add 𝑅2 +𝑅1 is there. So,

when the code will be assembled and linked and loaded you will replace it with the value of

memory location 3 that means after at 5 that memory location number fifth, you

unconditionally jump to memory location number 3 and you keep on doing it 3, 4, 5, 3, 4, 5, 3,

4, 5 it will be continuously executing.

But that is all these labels etcetera are replaced with the memory location values when they

code is parsed that is when the code be assembled. So, these are all thought in details in a course

called assembler linker loader that is the system programming, but for us it is enough to

understand right now that from jump to label 1 means you are jumping from this one to the

name to this instruction whose name is label 1 and in this. In fact, this is a it is a loop instruction

basically because there is no condition it has to be say infinite loop.

(Refer Slide Time: 27:16)

428

Right now there are as we have told that actually jump unconditionally used many times, but

the main heart of instructions on control instructions are basically on conditional instructions.

Like some of the examples it is given jump NE or jump on zero, there jump if not equal to zero

jump NE jump not equal to zero or jump not zero right. JEQ jump is equal to jump on Z, JNC

JLO jump if no carry or jump if carry.

So, you can go through it several type of instructions they are there jump L jump if less, JGE

jump if greater than or equal, JN jump if negative.

So, based on the flag like it is saying that jump NE or jump not Z in. In fact, this time you are

checking the jump not zero means you are checking the zero flag. Jump NE jump not equal to

means you are checking the equality flag.

Jump negative you are checking the negativity flag that is the sign flag. So, if the sign flag is

set; that means, it’s a negative number jump ah if less; so, you can check the equality flag. So,

all those different flags will be present based on the flag values or the flag registers available

you can correspondingly decide or design your instruction set on the jumps.

(Refer Slide Time: 28:33)

429

Like we are now going back to the same example of ah the same thing that there is a loop, we

are resetting the value of accumulator. we are resetting the value of 𝑅2 that is we are adding 1

+2 +3 +4 like that, but in the previous step we were actually jumping it unconditionally back

to the initial one; reset accumulator and register 2 then every time it was making 𝑅2+1

incrementing 𝑅2.

Then every time you are adding the value of 𝑅2 to accumulator repeatedly; that means, we are

not we are not exiting out of the loop based on some condition. Here we are actually using a

loop, the same example we are going to take, but here we are going to come out based on

certain conditions. Like if you look label 1 is the name of this instruction then add 𝑅2 to

accumulator ADD 𝑅2, 𝑅1.

That is increment the value of 𝑅2 same thing as above, add the value of 𝑅2 to the accumulator

that is add accumulator to 𝑅2; here the conditional step comes in. That is CMPI that is compare

the value of 𝑅2 to n; that means, you are incrementing the value of 𝑅2 say I want to add 1 +2

+3 +4 up to 10.

So, this n is in this case going to be 10. So, after doing the add 𝑅2 to 𝑅2 to accumulator and

saving back the value of accumulator we are going to check whether 𝑅2 has reached the value

of 10 or not; here it is 10. So, there is a comp CMPI instruction and whenever 𝑅2 will be equal

to 10; that corresponding equality flag will be checked it will be made set.

430

And then you can say jump not equal; that means, if the equality flag is not set jump not equal

then again you jump back to label. And whenever this will be equal that 𝑅2 and n will be equal

because n is = 10. So, n 𝑎𝑛𝑑 𝑅2 will have the value of 10 then jump not equal to label 1 will

become false; because now they will be equal.

Because jump not equal J not equal; it is true if and only if the equality flag is reset not equal.

Whenever the equality flag is true jump not equal to will become false because the equality

flag will be set. So, there is something called equality flag; so, if the equality flag is equal to 1

sorry equality flag is 0; that means, the two stuffs are not equal, two operands are not equal

then jump not equal will be true, but whenever two numbers will be equal then what is going

to happen the equality flag will be set.

And then jump not equal to will become false whenever jump not equal to will be false; it will

not jump to label, but we will go and execute the next instruction; so, it will come out of the

loop. So, it gives a very nice example that how the other infinite loop of adding 1 +2 +3 has

been modified to add 1 +2 +3 up to 10.

So, it gives a very nice idea that ah just before a comparison instruction we do a corresponding

comparison ah sorry we do a comparison instruction set the corresponding flags and just by

looking at the flag; we decide either to go to the top of the loop and re execute the loop or we

come out of this one. So, that is actually the very concrete example of using a control

instruction.

(Refer Slide Time: 31:27)

431

Now because ah whenever we will be looking at more ah different complicated codes in the

next module; we will be always using so many times these ah control instructions, but in this

unit we let us look at the more interesting part of it that is how the flags are set or which flags

are set. If we can find out which flags are set or reset then after that it is very simple to think

about the control instructions because there are just option true or false.

If it is true generally it will go to the next to the desired position of the label which is which is

the conditional instruction is pointing to the label; it will go to that label. If the condition is true

else we will just execute the next instruction after the jump instruction; extremely simple about

it.

So, now we are seeing with different examples how different flags are set which flags are set,

and which flags are reset that is more interesting. So, for example, they are doing +7 and -7;

so, as both + and - are involved. So, it’s a signed arithmetic. 7 is represented as 011 in 2’s

complement -7 is nothing, but in 2’s complement it is 011 and again you have to add a 1.

So, this is actually 2’s complement of -7 because a 1’ complement of -7 is nothing, but 1000,

you add a 1; you get this. So, this is actually the 2’s complement of 7 that is -7. So, -7 and +7

are represented over here just I recall from the digital design.

So, the LSB is 0; it’s a positive number; so, this is a positive number and this is a negative

number; now let us add it. So, as it’s a signed arithmetic. So, if you add it you are going to get

432

1, 1 + 1 is 0 carry will be 1. So, 1 + 1 again 0; the carry will be 1; so, 1 + 1 is 0 again 1 and this

is 0. So, this is basically your answer.

(Refer Slide Time: 33:08)

And this is your some extra bit has been generated. So, 7 - 7 = 0; so, answer is 0 which is

correct now you see what are the flags that are set and reset. In flag all flags are either set or

reset, but some will be used and some will be discarded based on the context. So, for example,

zero flag is set the 4 bit answer is 0000. So, it holds; so, this in this case Z = 0. So, the zeroth

flag is set.

It may be noted that we have considered 2’s arithmetic. So, we ignore be carry this is very

important in 2’s complement the arithmetic we generally ignore the carry ah, but anyway for

calculating the zeroth flag which is not at all going into look at the carry business, for the zeroth

flag checking this is only of matter of importance that is the answer 4 bits.

Whether a carry is generated if it’s not generated whether you want to reject be carry because

of 2’s complement arithmetic it has nothing to do. It has got the four 0’s as the answer; so, the

zeroth flag is set. When you check all the 4 bits ah if the answer is 0 as this holds in this case

the zeroth flag is 1. Then the MSB of the final answer after negating the carry because. So, in

this case zero flag is equal to 1 that is the first thing because it has nothing to do with any other

stuff.

433

You just take the 4 bits as the answer all 0 zeroth flag is set. Now the MSB is 0 because as I

told you in 2’s complement arithmetic we can neglect the carry 0; so, indicating that is a

positive answer. So, the ah; so, the answer is positive, so if there is a positive flag the answer

will be 1; in this case N say it is a negative flag N.

So, the negative flag is 0 because the answer is a positive flag in the case it is a positive. So,

negative flag is 0 so there is a negative flag call N. So, it will be reset because the answer is a

positive answer. So, had it been; so, we will see if the answer is a negative answer then what

will be value of the negative flag N flag; in this case as carry is generated. So, if you see; so,

zeroth flag is 1 negative flag is 0.

Negative flag is reset because this MSB is equal to 0, 0 in 2’s complement arithmetic at the

MSB will denotes a positive number. Now look at the carry; so, a carry is generated. So, as a

carry is generated the C flag of the carry flag is set to be 1, but again as the arithmetic is signed

the value of carry is ignored.

So, that is again very important; so, in a 2’s complement arithmetic what happens? We have

done this and if you look at the de facto standard in digital design in 2’s complement arithmetic,

we are not actually bothering about the carry which is generated that is a don’t care condition.

But in a hardware when the flags are set or reset it does not look at all those contexts.

This is zero the zeroth flag will just check what are the answer of the 4 bits as it is 0 the 0th

flag is set this bit is 0; that means, the positive number. So, the positive flag will be set or the

negative flag is reset, a carry has been generated so in this case the carry flag is set. But as the

arithmetic or the instructions we have executed we know these are 2’s complement numbers I

have given as input; so, I will not use the carry flag.

So, in other words the flag setting logic is totally blind; it is taking two numbers 0111 and 1001

and generating the answer as 1 as a carry and four 0s as the answer. And accordingly the flag

bits of 0 is set, the flag bit of negative number is reset and a carry flag is set. But as I know as

a programmer that I have given the two numbers which are input as 2’s complement arithmetic

and in this case the carry is not calculated or ignored. So, I have to myself ignore the carry flag

even if we set I should not use it as a. If I use the value of carry bit immediately after this

instruction to do some conditional check and jump, there may be a logical error in my code.

434

So, as a programmer I have to know that I have to ignore the carry flag for this instruction.

Since the both the numbers of; so, anyway ah say what other flags we can think since both the

numbers are of different sign, the output flag is zero anyway we will see that as the number of

1s in the answer is 0; so, even parity flag is set to one and so forth. So, anyway all this ah flag

bits can be easily understood ok.

So, again I will come to that; so, important are basically these 3 that the zero flag is set, the

negative flag is reset, a carry flag is set, but it has to be ignored similarly the 4 bits the answer

is 0. So, the zeroth flag will be set and there are 4 0’s; so, the number of parity is even.

So, the even parity will be set. The more the as the numbers are of different signs, some sign

flag will be set to 0 and so forth. So, lot of flags will be there and based on the values the flags

will be set or reset, but which flag has to be ignored has to be decided by us. Again I will take

another example; so, to make the things easier like for example, I have taken 2 and I have taken

-3.

(Refer Slide Time: 38:10)

That is 2 -3 I am going to do. So, this is a 2’s complement implementation of -3 and 2 if I do

the answer I am going to get this as the answer. So it is basically the answer should be equal to

nothing, but -1; so, in this case what happens? The four 1s are there. So, it is checking that the

last bit is 1.

435

So, the zeroth flag so anyway let us first illustrate with zeroth flag; so, the all the answers are

1; so in fact,; obviously, the answer is not 0. So, the zeroth flag is set to 0 that is obvious. The

MSB is 1; so, it’s a negative number; so, the negative flag is set to 1 obviously it is a negative

number because there so, 2 -3 is -1; so, negative flag is set there is no carry will be generated.

So, the carry flag is reset to 0 but again as a programmer; you have to always do not consider

the carry flag as of now because even if the carry flag is reset because there is no carry

generated, but in 2’s complement the arithmetic carry flags are not used. So, that you have to

overflow since both the numbers of different size the overall flag is 0.

So, why what I was telling about this overflow flag now and this means the idea is that if the

two numbers; one is positive and one is negative, a overflow can never happen. So, basically

in such cases always the overflow flag is reset. So, whenever I means whenever I take some

new examples now when both the numbers will be positive or both the numbers will be

negative; the overflow flag will be talked about.

So, in both the cases the overflow flag is set to 0; the answer is 4 1’s. So, if the 4 answers are

1 then what is the case? It’s an even parity; so, the even parity flag is set to 1.

(Refer Slide Time: 39:44)

436

Now, as I was telling you that all the flags we have considered, but every time the output or

the sorry the overflow flag O is the overflow flag. The overflow flag we are actually not

considering right now because one number is positive and one number is negative.

If both the numbers are differences sign the overflow flag is neglected. Now we are taking two

numbers as 8 and we are using an unsigned arithmetic. So, now all the other flags importance

will start coming up because two numbers are splitting and if you are adding you may get the

overflow, you may get the carry because you are going an unsigned arithmetic in unsigned

arithmetic carry etcetera are of importance.

So, I add two numbers 8 +8; so, you are going to get the answer as 10000 that is 16, but now

you see these are the 4 bits which is of importance this one bit carry or overflow has been

generated. So, now, this sorry; so, as the hardware it will just check the answers are 4 0. So,

that is true then the zero flag is set.

The MSB is zero; so, it is not going to check the carry one. So, the answer is 1000; 1000 so the

answer is 0000 the carry is generated as 1. So, if you check the MSB is 0; it is not going to look

at the overflow; so, the negative flag is reset again ah in this case also you can ah ignore the ah

negative or positive flag here; using this case is an unsigned arithmetic.

Previous version we are using a signed arithmetic in 2’s complement; this was very very

important; then again the flag was very important. In that case the zeroth MSB means a positive

number and 1 in the MSB as a negative number. So, in last context you had to take into mind

that I have to consider this flag. So, if I take 100 and 100 sorry 1000 and 1000 in 2’s

complement arithmetic, these are two negative numbers basically. So, if you are as a

programmer you know that I have given the two numbers as inputs which are in 2’s

complement in that case you have to very deliberately keep in mind about the sign flag.

But as the present example we are taking a unsigned arithmetic. So, we have to neglect the

negative flag carry has been generated definitely. So, the carry flag is set to 1 again previous

case we have to neglect the carry flag; that means, because we are using ah 2’s complement

arithmetic and one number was negative and one number was positive. So, we are neglecting

the carry flag, but here as we are using an unsigned arithmetic a carry has been generated and

in such unsigned arithmetic the carry flag is set to 1, a carry has been generated and you have

to consider this.

437

